
Cèl·lules de càrrega 301 Guia
301 Cèl·lula de càrrega
Característiques i aplicacions de la cèl·lula de càrrega
©1998–2009 Interface Inc.
Revisat el 2024
Tots els drets reservats.
Interface, Inc. no ofereix cap garantia, ni expressa ni implícita, incloses, entre d'altres, cap garantia implícita de comerciabilitat o adequació per a un propòsit particular, pel que fa a aquests materials, i fa que aquests materials estiguin disponibles únicament "tal com estan" .
En cap cas, Interface, Inc. serà responsable davant ningú de danys especials, col·laterals, incidentals o conseqüents en relació amb o derivats de l'ús d'aquests materials.
Interface® , Inc. 7401 Butherus Drive
Scottsdale, Arizona 85260
480.948.5555 telèfon
contact@interfaceforce.com
http://www.interfaceforce.com
Benvingut a la Guia Interface Load Cell 301, un recurs tècnic indispensable escrit per experts en mesura de força de la indústria. Aquesta guia avançada està dissenyada per a enginyers de proves i usuaris de dispositius de mesura que busquen informació completa sobre el rendiment i l'optimització de les cèl·lules de càrrega.
En aquesta guia pràctica, explorem temes crítics amb explicacions tècniques, visualitzacions i detalls científics essencials per entendre i maximitzar la funcionalitat de les cèl·lules de càrrega en diverses aplicacions.
Apreneu com la rigidesa inherent de les cèl·lules de càrrega afecta el seu rendiment en diferents condicions de càrrega. A continuació, investiguem la freqüència natural de la cèl·lula de càrrega, analitzant escenaris de càrrega lleugera i molt carregada per comprendre com les variacions de càrrega influeixen en la resposta de freqüència.
La ressonància de contacte és un altre aspecte crucial tractat àmpliament en aquesta guia, que il·lumina el fenomen i les seves implicacions per a mesures precises. A més, parlem de l'aplicació de càrregues de calibratge, posant èmfasi en la importància de condicionar la cèl·lula i abordar els impactes i la histèresi durant els procediments de calibratge.
Els protocols de prova i les calibracions s'examinen a fons, proporcionant directrius raonables per garantir la precisió i la fiabilitat en els processos de mesura. També aprofundim en l'aplicació de càrregues en ús, centrant-nos en tècniques de càrrega en eix i estratègies per controlar càrregues fora de l'eix per millorar la precisió de la mesura.
A més, explorem mètodes per reduir els efectes de càrrega aliens mitjançant l'optimització del disseny, oferint informació valuosa per mitigar les influències externes en el rendiment de les cèl·lules de càrrega. També es discuteix en detall la capacitat de sobrecàrrega amb càrregues alienes i el tractament de les càrregues d'impacte per equipar els enginyers amb el coneixement necessari per protegir les cèl·lules de càrrega contra condicions adverses.
La Guia de la cèl·lula de càrrega de la interfície 301 proporciona informació inestimable per optimitzar el rendiment, millorar la precisió i garantir la fiabilitat dels sistemes de mesura en diverses aplicacions.
El vostre equip d'interfície
Característiques i aplicacions de la cèl·lula de càrrega
Rigidesa de la cèl·lula de càrrega
Els clients sovint volen utilitzar una cèl·lula de càrrega com a element de l'estructura física d'una màquina o conjunt. Per tant, els agradaria saber com reaccionaria la cèl·lula davant les forces desenvolupades durant el muntatge i el funcionament de la màquina.
Per a les altres parts d'aquesta màquina que estan fetes amb materials d'estoc, el dissenyador pot buscar les seves característiques físiques (com ara l'expansió tèrmica, la duresa i la rigidesa) als manuals i determinar les interaccions de les seves peces en funció del seu disseny. Tanmateix, com que una cèl·lula de càrrega està construïda sobre una flexió, que és una peça mecanitzada complexa els detalls de la qual són desconeguts pel client, la seva reacció a les forces serà difícil de determinar per al client.
És un exercici útil per considerar com una flexió simple respon a les càrregues aplicades en diferents direccions. La figura 1, mostra l'examples d'una simple flexió feta rectificant una ranura cilíndrica als dos costats d'una peça d'acer. Les variacions d'aquesta idea s'utilitzen àmpliament en màquines i bancs de prova per aïllar les cèl·lules de càrrega de les càrregues laterals. En aquest exampi, la flexió simple representa un membre en el disseny d'una màquina, no una cèl·lula de càrrega real. La secció prima de la flexió simple actua com un coixinet virtual sense fricció amb una petita constant de molla de rotació. Per tant, és possible que s'hagi de mesurar i tenir en compte la constant de molla del material en les característiques de resposta de la màquina.
Si apliquem una força de tracció (FT ) o una força de compressió (FC ) a la flexió en un angle fora de la seva línia central, la flexió es veurà distorsionada lateralment per la component vectorial (F TX) o (FCX ) tal com es mostra amb els punts. esquema. Tot i que els resultats semblen bastant similars en ambdós casos, són dràsticament diferents.
En el cas de tracció de la figura 1, la flexió tendeix a doblegar-se per alinear-se amb la força fora de l'eix i la flexió assumeix una posició d'equilibri amb seguretat, fins i tot sota una tensió considerable.
En el cas de compressió, la reacció de la flexió, tal com es mostra a la figura 2, pot ser altament destructiva, tot i que la força aplicada és exactament de la mateixa magnitud i s'aplica al llarg de la mateixa línia d'acció que la força de tracció, perquè la flexió s'allunya de la línia d'acció de la força aplicada. Això tendeix a augmentar la força lateral (F CX) amb el resultat que la flexió
es doblega encara més. Si la força lateral supera la capacitat de la flexió per resistir el moviment de gir, la flexió continuarà doblegant-se i finalment fallarà. Així, el mode de fallada en compressió és el col·lapse de flexió i es produirà amb una força molt inferior a la que es pot aplicar amb seguretat en tensió.
La lliçó que cal aprendre d'aquest exampÉs que cal extremar la precaució quan es dissenyen aplicacions de cèl·lules de càrrega compressives utilitzant estructures columnars. Les lleus desalineacions es poden augmentar pel moviment de la columna sota càrrega de compressió, i el resultat pot anar des d'errors de mesura fins a una fallada completa de l'estructura.
L'anterior example demostra una de les principals advantages de l'Interface® LowProfile® disseny cel·lular. Com que la cel·la és tan curta en relació al seu diàmetre, no es comporta com una pila de columna sota càrrega de compressió. És molt més tolerant a la càrrega desalineada que una cel·la de columna.
La rigidesa de qualsevol cèl·lula de càrrega al llarg del seu eix primari, l'eix de mesura normal, es pot calcular fàcilment tenint en compte la capacitat nominal de la cèl·lula i la seva deflexió a la càrrega nominal. Les dades de deflexió de la cèl·lula de càrrega es poden trobar al catàleg Interface® i weblloc.
NOTA:
Tingueu en compte que aquests valors són típics, però no són especificacions controlades per a les cèl·lules de càrrega. En general, les deflexions són característiques del disseny de flexió, el material de flexió, els factors de mesura i el calibratge final de la cèl·lula. Aquests paràmetres es controlen individualment, però l'efecte acumulat pot tenir certa variabilitat.
Utilitzant la flexió SSM-100 de la figura 3, com a example, la rigidesa a l'eix primari (Z) es pot calcular de la següent manera:
Aquest tipus de càlcul és cert per a qualsevol cèl·lula de càrrega lineal del seu eix primari. En canvi, les rigideses dels eixos (X) i (Y) són molt més complicades de determinar teòricament, i no solen ser d'interès per als usuaris de Mini Cells, per la senzilla raó que la resposta de les cel·les en aquests dos eixos no està controlat com ho és per al LowProfilesèrie ®. Per a les minicel·les, sempre és recomanable evitar l'aplicació de càrregues laterals tant com sigui possible, perquè l'acoblament de càrregues fora de l'eix a la sortida de l'eix primari pot introduir errors en les mesures.
Per exampL'aplicació de la càrrega lateral (FX) fa que els mesuradors a A vegin tensió i els mesuradors a (B) vegin compressió. Si les flexions a (A) i (B) fossin idèntiques i els factors de mesura dels mesuradors a (A) i (B) coincidissin, esperaríem que la sortida de la cèl·lula cancel·lés l'efecte de la càrrega lateral. Tanmateix, com que la sèrie SSM és una cèl·lula d'utilitat de baix cost que s'utilitza normalment en aplicacions amb càrregues laterals baixes, el cost addicional per al client d'equilibrar la sensibilitat de càrrega lateral no sol ser justificable.
La solució correcta on es poden produir càrregues laterals o càrregues de moment és desacoblar la cèl·lula de càrrega d'aquestes forces alienes mitjançant l'ús d'un coixinet d'extrem de barra en un o ambdós extrems de la cèl·lula de càrrega.
Per exampla figura 4 mostra una instal·lació típica de cèl·lules de càrrega per al pes d'un barril de combustible assegut en una safata de pesatge, per tal de pesar el combustible utilitzat en les proves del motor.
Una hornilla està muntada fermament a la biga de suport mitjançant el seu pern. El coixinet de l'extrem de la barra és lliure de girar al voltant de l'eix del seu passador de suport i també es pot moure uns ± 10 graus de rotació tant dins com fora de la pàgina i al voltant de l'eix primari de la cèl·lula de càrrega. Aquestes llibertats de moviment garanteixen que la càrrega de tensió es mantingui a la mateixa línia central que l'eix principal de la cèl·lula de càrrega, fins i tot si la càrrega no està correctament centrada a la safata de pes.
Tingueu en compte que la placa d'identificació de la cel·la de càrrega es llegeix cap per avall perquè l'extrem sense sortida de la cel·la s'ha de muntar a l'extrem de suport del sistema.
Freqüència natural de la cèl·lula de càrrega: caixa lleugerament carregada
Sovint s'utilitzarà una cèl·lula de càrrega en una situació en què una càrrega lleugera, com una safata de pes o un petit dispositiu de prova, s'adjuntarà a l'extrem viu de la cèl·lula. L'usuari vol saber amb quina rapidesa respondrà la cel·la a un canvi de càrrega. En connectar la sortida d'una cèl·lula de càrrega a un oscil·loscopi i executar una prova senzilla, podem conèixer alguns fets sobre la resposta dinàmica de la cèl·lula. Si muntem fermament la cel·la en un bloc massiu i després toquem l'extrem actiu de la cel·la molt lleugerament amb un petit martell, veurem un
damptren d'ones sinusoïdals ed (una sèrie d'ones sinusoïdals que disminueixen progressivament fins a zero).
NOTA:
Tingueu molta precaució quan apliqueu un impacte a una cèl·lula de càrrega. Els nivells de força poden danyar la cèl·lula, fins i tot durant intervals molt curts.
La freqüència (nombre de cicles que es produeixen en un segon) de la vibració es pot determinar mesurant el temps (T ) d'un cicle complet, des d'un pas positiu per zero al següent. Un cicle s'indica a la imatge de l'oscil·loscopi de la figura 5, mitjançant la línia de traça en negreta. Coneixent el període (temps per a un cicle), podem calcular la freqüència natural d'oscil·lació lliure de la cèl·lula de càrrega (fO) a partir de la fórmula:
La freqüència natural d'una cèl·lula de càrrega és interessant perquè podem utilitzar el seu valor per estimar la resposta dinàmica de la cèl·lula de càrrega en un sistema poc carregat.
NOTA:
Les freqüències naturals són valors típics, però no són una especificació controlada. Es donen al catàleg Interface® només com a ajuda per a l'usuari.
El sistema equivalent molla-massa d'una cèl·lula de càrrega es mostra a la figura 6.
La massa (M1) correspon a la massa de l'extrem viu de la cèl·lula, des del punt d'unió fins a les seccions primes de la flexió. La molla, que té una constant de molla (K), representa la velocitat de la molla de la secció prima de mesura de la flexió. La massa (M2), representa la massa afegida de qualsevol aparell que estigui connectat a l'extrem viu de la cèl·lula de càrrega.
La figura 7 relaciona aquestes masses teòriques amb les masses reals en un sistema de cèl·lules de càrrega real. Tingueu en compte que la constant de molla (K ) es produeix a la línia divisòria a la secció prima de la flexió.
La freqüència natural és un paràmetre bàsic, resultat del disseny de la cèl·lula de càrrega, de manera que l'usuari ha d'entendre que l'addició de qualsevol massa a l'extrem actiu de la cèl·lula de càrrega tindrà l'efecte de reduir la freqüència natural del sistema total. Per exampEns podem imaginar tirant cap avall lleugerament sobre la massa M1 de la figura 6 i després deixar anar. La massa oscil·larà cap amunt i cap avall a una freqüència determinada per la constant de molla (K ) i la massa de M1.
De fet, les oscil·lacions seran damp a mesura que el temps avança de la mateixa manera que a la figura 5.
Si ara fixem la massa (M2) a (M1),
l'augment de la càrrega de massa reduirà la freqüència natural del sistema springmass. Afortunadament, si coneixem les masses de (M1 ) i (M2) i la freqüència natural de la combinació original molla-massa, podem calcular la quantitat que es reduirà la freqüència natural afegint (M2 ), d'acord amb la fórmula:
Per a un enginyer elèctric o electrònic, la calibració estàtica és un paràmetre (DC ), mentre que la resposta dinàmica és un paràmetre (AC ). Això es representa a la figura 7, on el calibratge de CC es mostra al certificat de calibratge de fàbrica, i els usuaris voldrien saber quina serà la resposta de la cèl·lula a una freqüència de conducció que utilitzaran en les seves proves.
Observeu l'espaiat igual de les línies de la quadrícula de "Freqüència" i "Sortida" al gràfic de la figura 7. Totes dues són funcions logarítmiques; és a dir, representen un factor de 10 d'una línia de quadrícula a la següent. Per example, "0 db" significa "cap canvi"; "+20 db" significa "10 vegades més que 0 db"; “–20 db” significa “1/10 fins a 0 db”; i "–40 db" significa "1/100 fins a 0 db".
Mitjançant l'ús de l'escala logarítmica, podem mostrar un rang més gran de valors i les característiques més comunes resulten ser línies rectes al gràfic. Per example, la línia discontínua mostra el pendent general de la corba de resposta per sobre de la freqüència natural. Si continuéssim el gràfic cap avall i cap a la dreta, la resposta es tornaria asimptòtica (cada vegada més a prop) a la línia recta discontínua.
NOTA:
La corba de la figura 63 només es proporciona per representar la resposta típica d'una cèl·lula de càrrega lleugerament carregada en condicions òptimes. En la majoria d'instal·lacions, les ressonàncies en els accessoris de fixació, el marc de prova, el mecanisme de conducció i la UUT (unitat a prova) predominaran sobre la resposta de la cèl·lula de càrrega.
Freqüència natural de la cèl·lula de càrrega: caixa fortament carregada
En els casos en què la cèl·lula de càrrega està estretament acoblada mecànicament a un sistema en què les masses dels components són significativament més pesades que la massa pròpia de la cèl·lula de càrrega, la cèl·lula de càrrega tendeix més a actuar com una simple molla que connecta l'element impulsor amb l'element impulsat. el sistema.
El problema per al dissenyador del sistema es converteix en l'anàlisi de les masses del sistema i la seva interacció amb la constant de molla molt rígida de la cèl·lula de càrrega. No hi ha una correlació directa entre la freqüència natural descarregada de la cèl·lula de càrrega i les ressonàncies molt carregades que es veuran al sistema de l'usuari.
Contacta amb Ressonància
Gairebé tothom ha botat una pilota de bàsquet i s'ha adonat que el període (temps entre cicles) és més curt quan la pilota rebota més a prop del terra.
Qualsevol persona que hagi jugat a una màquina de pinball ha vist com la pilota batejava d'anada i tornada entre dos dels pals metàl·lics; com més s'apropen els pals al diàmetre de la pilota, més ràpid sonarà la pilota. Tots dos efectes de ressonància són impulsats pels mateixos elements: una massa, un buit lliure i un contacte elàstic que inverteix la direcció del viatge.
La freqüència d'oscil·lació és proporcional a la rigidesa de la força de restauració, i inversament proporcional tant a la mida del buit com a la massa. Aquest mateix efecte de ressonància es pot trobar en moltes màquines, i l'acumulació d'oscil·lacions pot danyar la màquina durant el funcionament normal.
Per exampA la figura 9, s'utilitza un dinamòmetre per mesurar la potència d'un motor de gasolina. El motor a prova impulsa un fre d'aigua l'eix de sortida del qual està connectat a un braç de radi. El braç és lliure de girar, però està limitat per la cèl·lula de càrrega. Coneixent les RPM del motor, la força sobre la cèl·lula de càrrega i la longitud del braç de radi, podem calcular la potència del motor.
Si mirem el detall del joc entre la bola del coixinet de la barra i la màniga del coixinet de la barra a la figura 9, trobarem una dimensió de joc, (D), a causa de la diferència de mida de la bola i la seva màniga de restricció. La suma de les dues jocs de boles, més qualsevol altra soltura del sistema, serà el "buit" total que pot provocar una ressonància de contacte amb la massa del braç de radi i la velocitat de molla de la cèl·lula de càrrega.
A mesura que augmenta la velocitat del motor, podem trobar una determinada RPM a la qual la velocitat de tret dels cilindres del motor coincideix amb la freqüència de ressonància de contacte del dinamòmetre. Si sostenim que RPM, es produirà l'ampliació (multiplicació de les forces), s'acumularà una oscil·lació de contacte i es podrien imposar fàcilment a la cèl·lula de càrrega forces d'impacte de deu vegades o més la força mitjana.
Aquest efecte serà més pronunciat quan es prova un motor de tallagespa d'un cilindre que quan es prova un motor automàtic de vuit cilindres, perquè els impulsos de tret s'atenuen a mesura que es superposen al motor de l'automòbil. En general, augmentar la freqüència de ressonància millorarà la resposta dinàmica del dinamòmetre.
L'efecte de la ressonància de contacte es pot minimitzar mitjançant:
- Utilitzant coixinets de barra d'alta qualitat, que tenen un joc molt baix entre la bola i el sòcol.
- Apretant el cargol del coixinet de l'extrem de la barra per assegurar-se que la bola estigui ben ferma clamped al seu lloc.
- Fer que el bastidor del dinamòmetre sigui el més rígid possible.
- Ús d'una cèl·lula de càrrega de major capacitat per augmentar la rigidesa de la cèl·lula de càrrega.
Aplicació de càrregues de calibratge: condicionament de la cèl·lula
Qualsevol transductor que depèn de la deflexió d'un metall per al seu funcionament, com ara una cèl·lula de càrrega, un transductor de parell o un transductor de pressió, conserva un historial de les seves càrregues anteriors. Aquest efecte es produeix perquè els petits moviments de l'estructura cristal·lina del metall, per petits que siguin, en realitat tenen un component de fricció que es mostra com a histèresi (no repetició de mesures que es prenen des de diferents direccions).
Abans de l'execució de calibratge, l'historial es pot escombrar fora de la cèl·lula de càrrega mitjançant l'aplicació de tres càrregues, des de zero fins a una càrrega que superi la càrrega més alta de la prova de calibratge. Normalment, s'aplica almenys una càrrega del 130% al 140% de la capacitat nominal, per permetre l'ajustament adequat i l'encaixament dels accessoris de prova a la cèl·lula de càrrega.
Si la cèl·lula de càrrega està condicionada i les càrregues es fan correctament, s'obtindrà una corba amb les característiques de (ABCDEFGHIJA), com a la figura 10.
Tots els punts cauran en una corba suau i la corba es tancarà en tornar a zero.
A més, si es repeteix la prova i les càrregues es fan correctament, els punts corresponents entre la primera i la segona tirada cauran molt a prop entre si, demostrant la repetibilitat de les mesures.
Aplicació de càrregues de calibratge: impactes i histèresi
Sempre que una prova de calibratge produeix resultats que no tenen una corba suau, que no es repeteixen bé o que no tornen a zero, la configuració de la prova o el procediment de càrrega hauria de ser el primer lloc a comprovar.
Per example, la Figura 10 mostra el resultat de l'aplicació de càrregues on l'operador no tenia cura quan s'aplicava la càrrega del 60%. Si el pes es deixava caure lleugerament sobre el bastidor de càrrega i s'aplicava un impacte d'un 80% de càrrega i després es tornava al punt del 60%, la cèl·lula de càrrega estaria funcionant amb un bucle d'histèresi menor que acabaria al punt (P) en lloc d'en punt (D). Continuant amb la prova, el punt del 80% acabaria a (R) i el punt del 100% acabaria a (S). Tots els punts descendents caurien per sobre dels punts correctes i el retorn a zero no es tancaria.
El mateix tipus d'error es pot produir en un marc de prova hidràulic si l'operador supera la configuració correcta i després torna la pressió al punt correcte. L'únic recurs per impactar o sobrepassar és reacondicionar la cel·la i tornar a provar.
Protocols de prova i calibratges
Les cèl·lules de càrrega es condicionen rutinàriament en un mode (ja sigui de tensió o compressió) i després es calibren en aquest mode. Si també es requereix un calibratge en el mode oposat, la cel·la es condiciona primer en aquest mode abans de la segona calibració. Així, les dades de calibratge reflecteixen el funcionament de la cèl·lula només quan està condicionada en el mode en qüestió.
Per aquest motiu, és important determinar el protocol de prova (la seqüència d'aplicacions de càrrega) que el client té previst utilitzar, abans que es pugui produir una discussió racional de les possibles fonts d'error. En molts casos, s'ha de dissenyar una acceptació especial de fàbrica per garantir que es compleixin els requisits de l'usuari.
Per a aplicacions molt estrictes, els usuaris generalment poden corregir les seves dades de prova per a la no linealitat de la cèl·lula de càrrega, eliminant així una quantitat substancial de l'error total. Si no poden fer-ho, la no linealitat formarà part del seu pressupost d'error.
La no repetibilitat és essencialment una funció de la resolució i l'estabilitat de l'electrònica de condicionament del senyal de l'usuari. Les cèl·lules de càrrega solen tenir una no repetibilitat millor que els marcs de càrrega, els accessoris i l'electrònica que s'utilitzen per mesurar-les.
La font d'error restant, la histèresi, depèn molt de la seqüència de càrrega del protocol de prova de l'usuari. En molts casos, és possible optimitzar el protocol de prova per minimitzar la introducció d'histèresi no desitjada a les mesures.
Tanmateix, hi ha casos en què els usuaris es veuen obligats, ja sigui per un requisit extern del client o per una especificació interna del producte, a operar una cèl·lula de càrrega d'una manera indefinida que donarà lloc a efectes d'histèresi desconeguts. En aquests casos, l'usuari haurà d'acceptar la histèresi del pitjor cas com a especificació de funcionament.
A més, algunes cèl·lules s'han de fer funcionar en ambdós modes (tensió i compressió) durant el seu cicle d'ús normal sense poder reacondicionar la cel·la abans de canviar de mode. Això dóna lloc a una condició anomenada commutació (no retorn a zero després de fer un bucle per ambdós modes).
A la sortida normal de fàbrica, la magnitud de la commutació és un rang ampli on el pitjor dels casos és aproximadament igual o lleugerament més gran que la histèresi, depenent del material de flexió i la capacitat de la cèl·lula de càrrega.
Afortunadament, hi ha diverses solucions al problema de commutació:
- Utilitzeu una cèl·lula de càrrega de major capacitat perquè pugui funcionar en un rang més petit de la seva capacitat. La commutació és més baixa quan l'extensió al mode contrari és un percentatge més petittage de la capacitat nominal.
- Utilitzeu una cel·la feta d'un material de commutació inferior. Poseu-vos en contacte amb la fàbrica per obtenir recomanacions.
- Especifiqueu un criteri de selecció per a la producció normal de fàbrica. La majoria de les cel·les tenen un rang de commutació que pot produir prou unitats de la distribució normal. Depenent de la taxa de construcció de fàbrica, el cost d'aquesta selecció sol ser força raonable.
- Especifiqueu una especificació més estricta i feu que la fàbrica cotitzi una execució especial.
Aplicació de càrregues en ús: càrrega en eix
Totes les càrregues en l'eix generen algun nivell, per petit que sigui, de components aliens fora de l'eix. La quantitat d'aquesta càrrega aliena és una funció de la tolerància de les peces en el disseny de la màquina o bastidor de càrrega, la precisió amb què es fabriquen els components, la cura amb què s'alineen els elements de la màquina durant el muntatge, la rigidesa. de les peces de càrrega, i l'adequació del maquinari de fixació.
Control de càrregues fora de l'eix
L'usuari pot optar per dissenyar el sistema per eliminar o reduir la càrrega fora de l'eix a les cèl·lules de càrrega, fins i tot si l'estructura pateix distorsió sota càrrega. En mode de tensió, això és possible mitjançant l'ús de coixinets d'extrem de biela amb horns.
Quan la cèl·lula de càrrega es pot mantenir separada de l'estructura del marc de prova, es pot utilitzar en mode de compressió, que gairebé elimina l'aplicació de components de càrrega fora de l'eix a la cèl·lula. Tanmateix, en cap cas es poden eliminar completament les càrregues fora de l'eix, perquè sempre es produirà la desviació dels membres de càrrega i sempre hi haurà una certa fricció entre el botó de càrrega i la placa de càrrega que pot transmetre les càrregues laterals al cel·la.
En cas de dubte, el LowProfileLa cel·la ® sempre serà la cel·la escollida tret que el pressupost general d'error del sistema permeti un marge generós per a càrregues alienes.
Reducció dels efectes de càrrega estranys optimitzant el disseny
En aplicacions de prova d'alta precisió, es pot aconseguir una estructura rígida amb baixa càrrega externa mitjançant l'ús de flexions de terra per construir el marc de mesura. Això, o per descomptat, requereix un mecanitzat de precisió i un muntatge del bastidor, que pot suposar un cost considerable.
Capacitat de sobrecàrrega amb càrrega aliena
Un efecte greu de la càrrega fora de l'eix és la reducció de la capacitat de sobrecàrrega de la cèl·lula. El valor de sobrecàrrega típic del 150% en una cèl·lula de càrrega estàndard o el valor de sobrecàrrega del 300% en una cèl·lula amb classificació de fatiga és la càrrega permesa a l'eix primari, sense cap càrrega lateral, moments o parells aplicats a la cèl·lula simultàniament. Això es deu al fet que els vectors fora de l'eix s'afegiran amb el vector de càrrega a l'eix i la suma vectorial pot provocar una condició de sobrecàrrega en una o més de les àrees calibrades de la flexió.
Per trobar la capacitat de sobrecàrrega en l'eix permesa quan es coneixen les càrregues alienes, calculeu la component en l'eix de les càrregues alienes i resteu-les algebraicament de la capacitat de sobrecàrrega nominal, tenint cura de tenir en compte en quin mode (tensió o compressió) la cel·la s'està carregant.
Càrregues d'impacte
Els neòfits en l'ús de cèl·lules de càrrega sovint en destrueixen una abans que un vell tingui l'oportunitat d'advertir-los sobre les càrregues d'impacte. Tots voldríem que una cèl·lula de càrrega pogués absorbir almenys un impacte molt curt sense danys, però la realitat és que si l'extrem viu de la cèl·lula es mou més del 150% de la deflexió de capacitat total en relació amb el punt mort, la cèl·lula podria sobrecarregar-se, per molt curt que sigui l'interval en què es produeixi la sobrecàrrega.
En el panell 1 de l'exampA la figura 11, es deixa caure una bola d'acer de massa “m” des de l'alçada “S” a l'extrem viu de la cèl·lula de càrrega. Durant la caiguda, la pilota s'accelera per la gravetat i ha assolit una velocitat "v" en l'instant en què entra en contacte amb la superfície de la cèl·lula.
Al panell 2, la velocitat de la pilota s'aturarà completament, i al panell 3 la direcció de la pilota s'invertirà. Tot això ha de passar en la distància que triga la cèl·lula de càrrega a assolir la capacitat nominal de sobrecàrrega, o la cèl·lula es pot danyar.
En l'exampEn el que es mostra, hem escollit una cel·la que pot desviar un màxim de 0.002" abans de sobrecarregar-se. Perquè la pilota s'aturi completament en una distància tan curta, la cèl·lula ha d'exercir una força tremenda sobre la pilota. Si la bola pesa una lliura i es deixa caure un peu sobre la cel·la, el gràfic de la figura 12 indica que la cel·la rebrà un impacte de 6,000 lliures (s'assumeix que la massa de la pilota és molt més gran que la massa del extrem viu de la cèl·lula de càrrega, que sol ser el cas).
L'escala del gràfic es pot modificar mentalment tenint en compte que l'impacte varia directament amb la massa i amb el quadrat de la distància baixada.
Interface® és el líder mundial de confiança en solucions de mesura de força®.
Liderem dissenyant, fabricant i garantint les cèl·lules de càrrega, transductors de parell, sensors multieixos i instrumentació relacionada amb el més alt rendiment disponible. Els nostres enginyers de classe mundial proporcionen solucions a les indústries aeroespacial, automotriu, energètica, mèdica i de proves i mesures des de grams fins a milions de lliures, en centenars de configuracions. Som el proveïdor preeminent de les empreses Fortune 100 a tot el món, incloses; Boeing, Airbus, NASA, Ford, GM, Johnson & Johnson, NIST i milers de laboratoris de mesura. Els nostres laboratoris de calibratge interns admeten una varietat d'estàndards de prova: ASTM E74, ISO-376, MIL-STD, EN10002-3, ISO-17025 i altres.
Podeu trobar més informació tècnica sobre les cèl·lules de càrrega i l'oferta de productes d'Interface® a www.interfaceforce.com, o trucant a un dels nostres enginyers d'aplicacions experts al 480.948.5555.

Documents/Recursos
![]() |
Interfície 301 Cèl·lula de càrrega [pdfGuia de l'usuari 301 Cèl·lula de càrrega, 301, Cèl·lula de càrrega, Cèl·lula |




